

Universidad Nacional de San Luis Facultad de Ciencias Físico, Matemáticas y Naturales Ingeniería Electrónica con Orientación en Sistemas Digitales

Diseño, implementación y medición de dispositivos de cosecha de energía

Moreno Gelabert, Santiago Ing. Ramero, Lucas

6 de Julio 2019

smgelabert@gmail.com

Un largo camino por recorrer l

- Introducción
 - Motivación
 - Objetivo
- Visión General
- Necesidades del proyecto WSN
- Elementos de cosecha de energía
 - Obtención del modelo matemático
 - Resultados caracterización del panel solar
 - Resultados caracterización de la celda peltier
 - Potencial del ambiente
- Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento

Un largo camino por recorrer II

- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bq25504
 - PCB para el prototipo de cosechador de energía
- 8 Ensamble final del prototipo
- 9 Prueba de campo para el sistema de cosecha
- 10 Implementación de nodos
- Conclusiones
- Por último

Índice

- Introducción
 - Motivación
 - Objetivo
- Visión General
- Necesidades del proyecto WSN
- 4 Elementos de cosecha de energía
 - Obtención del modelo matemático
 - Resultados caracterización del panel solar
 - Resultados caracterización de la celda peltier
 - Potencial del ambiente

Motivación

- Capturar energía del medio ambiente y aprovechar la misma para algún dispositivo eléctrico.
- Ampliar los conocimientos, madurar y crecer en el área de las energías limpias.
- Satisfacer las necesidades del Proyecto Campo Demostrativo Conectado.

Objetivo principal

Diseñar e implementar un prototipo de sistema de cosecha de energía, de baja potencia, capaz de capturar energía del medio ambiente.

Índice

- Introducción
 - Motivación
 - Objetivo
- Visión General
- Necesidades del proyecto WSN
- 4 Elementos de cosecha de energía
 - Obtención del modelo matemático
 - Resultados caracterización del panel solar
 - Resultados caracterización de la celda peltier
 - Potencial del ambiente

Visión General I

¿Qué es un Nodo Sensor Inalámbrico?

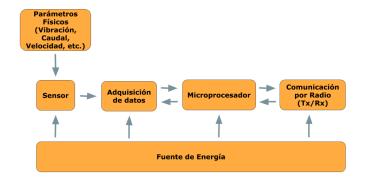


Figura: Diagrama de bloques general para un Nodo Sensor Inalámbrico.

Visión General II

¿ Qué sucede cuando varios Nodos se combinan entre sí?

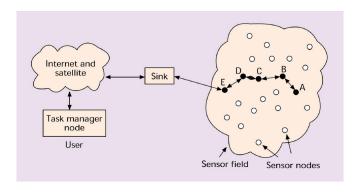


Figura: Arquitectura de WSN.

Visión General III

Example (Ejemplos de aplicación de las WSNs)

- Monitoreo de salud estructural
- Monitoreo ambiental
- Monitoreo en la salud
- Eficiencia energética
- Aplicaciones en el Agro

Problemática

Desde el punto de vista energético

- Hay requerimientos de dimensiones en los Nodos alimentados con baterías.
- Las WSNs suelen instarse en regiones de difícil acceso, ergo no es posible suministrar energía a través de cables o reemplazar baterías.
- Necesidad de suministrar energía para toda la vida útil de un Nodo.

Solución

Figura: Flujo de energía para el sistema de cosecha y nodo sensor inalámbrico.

- Indicación de estado para el almacenador.
- Baja I_O (Quiescent Current), que es la corriente consumida por un circuito cuando está en estado inactivo
- Regulación de tensión máxima de salida.
- Protección contra corto circuito y sobre tensión para el almacenador.

Índice

Introducción

- Introducción
 - Motivación
 - Objetivo
- Visión General
- Necesidades del proyecto WSN
- 4 Elementos de cosecha de energía
 - Obtención del modelo matemático
 - Resultados caracterización del panel solar
 - Resultados caracterización de la celda peltier
 - Potencial del ambiente

Elementos de cosecha de energía

Necesidades del proyecto WSN I

Ensayos realizados

Dispositivo	Configuración	Energía [Wh]
Arduino MEGA con	1	1.055
Dragino LoRa Shield 1.3	2	0.150

Cuadro: Resultados experimentales de las configuraciones a lo largo de 1 hora, operando en régimen estable.

• El consumo energético de las configuraciones es elevado.

Necesidades del proyecto WSN II

Investigando en foros y páginas oficiales

Elemento	Activo	Sleep
Arduino MEGA	45.54 [mWh]	12.87 [mWh]

Cuadro: Energía teórica consumida por arduino MEGA, con modificaciones de hardware y software.

Necesidades del proyecto WSN III

Según las especificaciones técnicas del Lora Shield

Elemento	Transmitiendo	Recibiendo	Sleep
Dragino LoRa Shield 1.3	66 [mWh]	37.95 [mWh]	0.0033 [mWh]

Cuadro: Energía consumida por el Lora Shield, configurado por software.

Índice

- Introducción
 - Motivación
 - Objetivo
- Visión General
- Necesidades del proyecto WSN
- 4 Elementos de cosecha de energía
 - Obtención del modelo matemático
 - Resultados caracterización del panel solar
 - Resultados caracterización de la celda peltier
 - Potencial del ambiente

Elementos de cosecha de energía

¿ Por qué se eligieron como elementos de cosecha de energía una panel solar y una celda peltier?

- Se pueden asociar.
- Fácil mantenimiento.
- Disponibilidad y cantidad de energía que proporcionan las diversas fuentes de energía.
- Potenciales aplicaciones en el proyecto WSN.

¿Para qué se caracterizaron elementos de cosecha de energía?

 Para poder obtener modelos matemáticos que representasen a los elementos, y así saber cual elemento entrega mayor energía, a lo largo de un día.

Obtención del modelo matemático I

$$FF = \frac{P_{max}}{P_{proy}} \tag{1}$$

$$FF = \frac{P_{max}}{I_{sc} * V_{oc}} \tag{2}$$

$$FF(G) * I_{sc}(G) * V_{oc}(G) = P_{max}(G)$$
 (3)

$$FF(\Delta T) * I_{sc}(\Delta T) * V_{oc}(\Delta T) = P_{max}(\Delta T)$$
 (4)

- Ensayo de FF vs G.
- Ensayo de I_{sc} , V_{oc} y G.

- Ensayo de FF vs ΔT .
- Ensayo de I_{sc} y ΔT .
- Ensayo de V_{oc} y ΔT .

Obtención del modelo matemático II

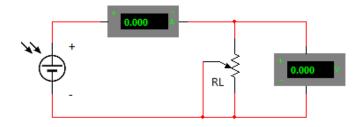


Figura: Conexión eléctrica elementos de cosecha para ensayo de FF vs ΔT ó G

Resultados caracterización del panel solar I

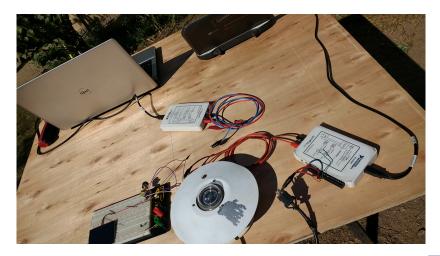


Figura: Banco de prueba para el panel solar.

Resultados caracterización del panel solar II

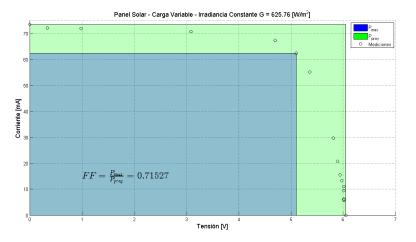


Figura: Mediciones para obtener un factor de forma sobre el panel.

Resultados caracterización del panel solar III

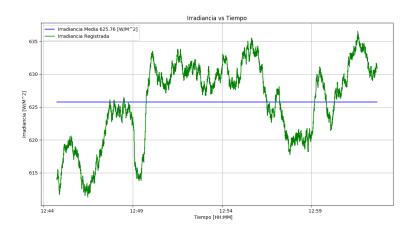


Figura: Irradiancia asociada a las mediciones anteriores.

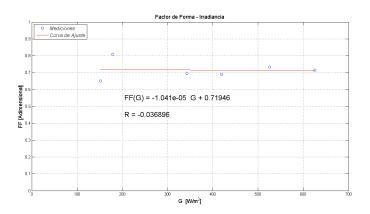


Figura: Superposición de los ensayos de factor de forma.

Resultados caracterización del panel solar V

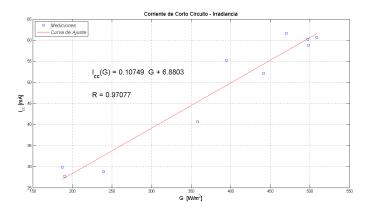


Figura: Mediciones del ensayo de I_{SC} y G.

Resultados caracterización del panel solar VI

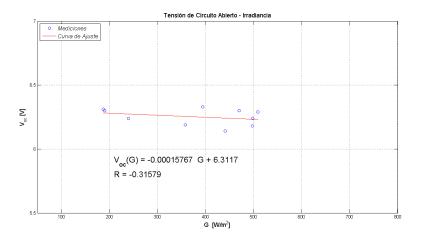


Figura: Mediciones del ensayo de V_{oc} y G.

<u>Resultados caracterización del panel solar VII</u>

Definición de $P_{max}(G)$ para el panel solar.

$$FF(G) * I_{sc}(G) * V_{oc}(G) = P_{max}(G)$$
 (5)

$$[-0,000012193 \ G^2 + 0,48733 \ G + 31,244 \ [mW] = P_{max} \ (6)$$

¿Para qué valores de G es valida la ecuación?

Irradiancia comprendida entre [151,7; 625,76] W/m^2 .

Resultados caracterización de la celda peltier I

Figura: Banco de prueba para la celda peltier.

Resultados caracterización de la celda peltier II

Figura: Mediciones para obtener un factor de forma sobre la celda.

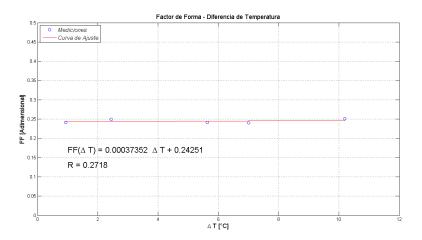


Figura: Superposición de los ensayos de factor de forma.

Resultados caracterización de la celda peltier IV

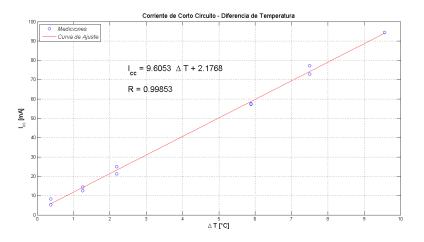


Figura: Mediciones del ensayo de I_{sc} y ΔT .

Resultados caracterización de la celda peltier V

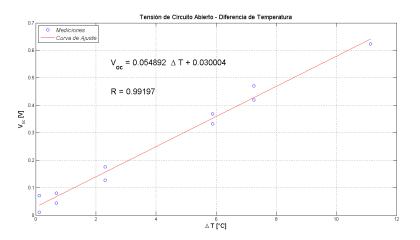


Figura: Mediciones del ensayo de V_{oc} y ΔT .

Resultados caracterización de la celda peltier VI

Definición de $P_{max}(\Delta T)$ para el panel solar.

$$FF(\Delta T) * I_{sc}(\Delta T) * V_{oc}(\Delta T) = P_{max}(\Delta T)$$
 (7)

$$0.12786 \Delta T^2 + 0.098868 \Delta T + 0.015839 [mW] = P_{max}$$
 (8)

<u>i Para qué v</u>alores de ΔT es valida la ecuación?

Para el intervalo de diferencia de temperaturas comprendidos entre [0,94;10,19] ⁰C.

Potencial del ambiente I

Días	21/06/2018 (Invierno)	21/12/2017 (Verano)
Irradiancia	$132,09 \ [W/m^2]$	$374,61 \ [W/m^2]$
Diferencia de Temperatura ^a	5,2167 [⁰ C]	5,5833 [°C]

Cuadro: Datos extraídos del sistema NEO (NASA Earth Observations) y del sistema SMN (Servicio Meteorológico Nacional)

 a Según la Carta de Suelos de la República Argentina, en San Luis, la temperatura media del suelo, a 50 cm, se estima en 19 o C.

$$-0.000012193 \ G^2 + 0.48733 \ G + 31.244 \ [mW] = P_{max}$$

$$0.12786 \Delta T^2 + 0.098868 \Delta T + 0.015839 [mW] = P_{max}$$

(9)

Potencial del ambiente II

Resultado de emplear los modelos matemáticos

Días	21/06/2018 (Invierno)	21/12/2017 (Verano)
P _{max} del Panel	95,40 [<i>mW</i>]	212,09 [mW]
P_{max} de la Celda	4,0113 [mW]	4,5538 [mW]

Cuadro: Potencia generada por los elementos de cosecha de energía.

Índice

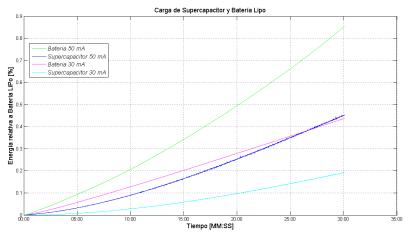
- Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento
- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bq25504
 - PCB para el prototipo de cosechador de energía
- Ensamble final del prototipo
- 9 Prueba de campo para el sistema de cosecha

Magnitudes de los elementos de almacenamiento

Magnitudes calculadas para los dispositivos de almacenamiento

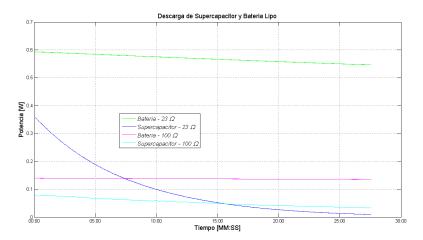
Elemento	Volumen [I]	Energía [Wh]	Densidad de energía [Wh/I]
Supercapacitor	0.0062	0.0354	5.6855
Batería LiPo	0.0075	7.4	981.0467

Consideraciones para los almacenadores I


Recomendaciones supercapacitor

- Evitar cortocircuitos.
- No aplicar sobretensión, carga inversa, presión o temperaturas mayores de 150 °C.

Recomendaciones batería LiPo


- Las baterías LiPo cargadas dentro de los límites de tensión (donde la tensión de operación se define entre 2,8 y 4,2 V) recomendados pueden proporcionar cientos de ciclos de carga y descarga.
- La carga y descarga de las baterías LiPo fuera de su ventana de tensión recomendada causa degradación física y pérdida de rendimiento.

Carga de los elementos de almacenamiento

Descarga de los elementos de almacenamiento

- 5 Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento
- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bq25504
 - PCB para el prototipo de cosechador de energía
- 8 Ensamble final del prototipo
- Prueba de campo para el sistema de cosecha

Selección del administrador de energía

Name	Manufacturer	Quiescence Current (I _Q)	Sensitivity	Output Voltage	Energy Source
¹ LTC3107	Linear Technology	80 nA (Harvesting) 60 μA (No harvesting)	20 mV	4.3 V	Thermal energy
² bq25505	Texas Instrument	325 nA	330 mV (Start-up) 100 mV (After start-up)	5.0 V	Solar energy, Thermal energy
³ SPV1050	STMicroelectronics	-	180 mV	3.6 V	Solar and thermal energy
⁴ MAX17710	MAXIM	625 nA	0.75 V	6.0 V	RF, solar, and thermal energy
⁵ PCC110	Powercast	Peak efficiency: 75 %	-17 dBm	-	RF (100 MHz ~ 6 GHz)

1http://www.linear.com/product/LTC3107 2http://www.ti.com/product/bu25505

3http://www.st.com/web/catalog/sense_power/FM142/CL1810/SC1517/PF259832?icmp=spv1050_pron_pr-spv1050_dec2013

4http://www.maximintegrated.com/datasheet/index.mvp/id/7183

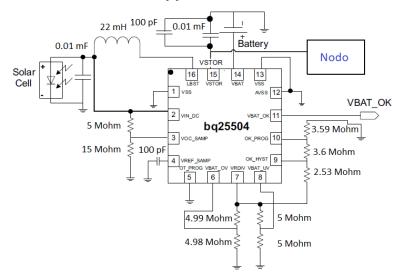
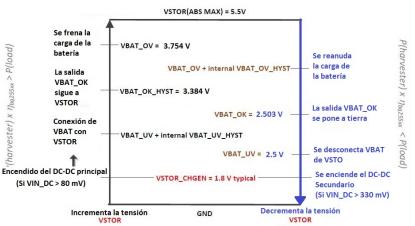

5http://www.powercastco.com/PDF/PCC110-PCC210-Overview.pdf

Figura: Administradores de energía comerciales.


Administrador bg 25504

Solar Application Circuit

Funcionamiento del administrador bg 25504

- 5 Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento
- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bq25504
 - PCB para el prototipo de cosechador de energía
- Ensamble final del prototipo
- Prueba de campo para el sistema de cosecha

Adaptador DIP para el bg25504

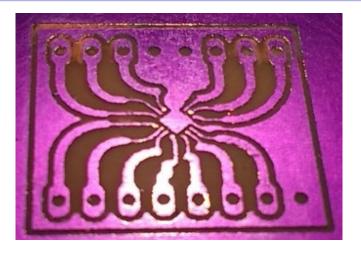


Figura: Adaptador SMD a DIP, después de la remoción del cobre expuesto.

PCB para el prototipo de cosechador de energía

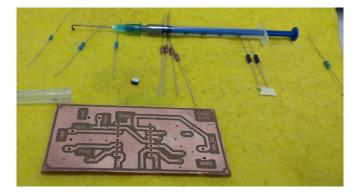


Figura: PCB para el prototipo de cosechador de energía junto algunos componentes.

- 5 Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento
- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bg25504
 - PCB para el prototipo de cosechador de energía
- 8 Ensamble final del prototipo
- Prueba de campo para el sistema de cosecha

Ensamble final del prototipo

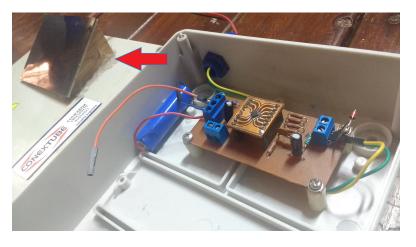


Figura: Ensamble final del prototipo.

- 5 Elementos de almacenamiento de energía
 - Magnitudes de los elementos de almacenamiento
 - Consideraciones para los almacenadores
 - Carga de los elementos de almacenamiento
 - Descarga de los elementos de almacenamiento
- 6 Administrador de energía
 - Selección del administrador de energía
 - Administrador bq 25504
- Diseños de PCBs
 - Adaptador DIP para el bq25504
 - PCB para el prototipo de cosechador de energía
- Ensamble final del prototipo
- Prueba de campo para el sistema de cosecha

Prueba de campo para el sistema de cosecha

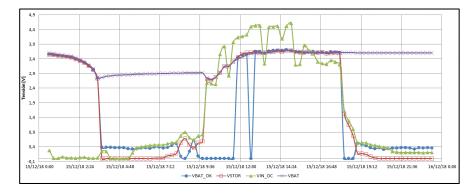


Figura: Datos del día 15/12/18, resistencia de 97 ohm.

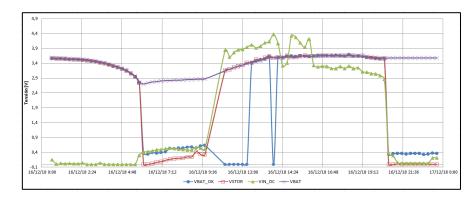


Figura: Datos del día 16/12/18, resistencia de 175 ohm.

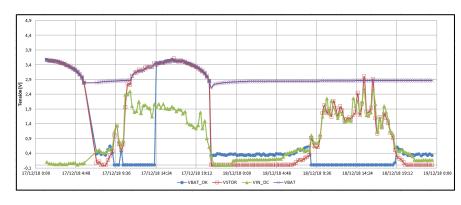


Figura: Datos de los días 17 y 18/12/18, resistencia de 175 ohm.

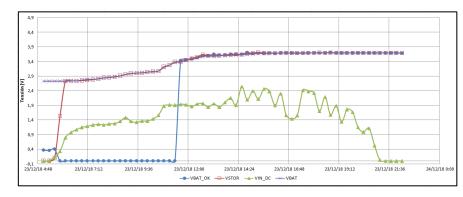


Figura: Datos del día 23/12/18, sin resistencia.

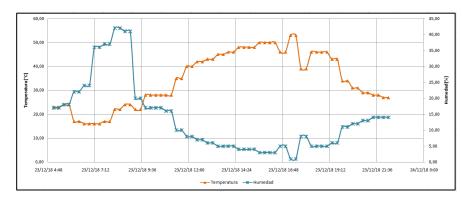


Figura: Datos del día 23/12/18, sin resistencia.

10 Implementación de nodos

- Conclusiones
- 12 Por último

Implementación de nodos

$$ar{P}_{g} \geq ar{P}_{c}$$
 (11)

$$\bar{P}_c = D_{Tx} P_{Tx} + D_{Rx} P_{Rx} + D_{sleep} P_{sleep}$$
 (12)

$$D = \frac{t_{activo}}{t_{activo} + t_{inactivo}} = \frac{t_{activo}}{t_{periodo}}$$
 (13)

0000

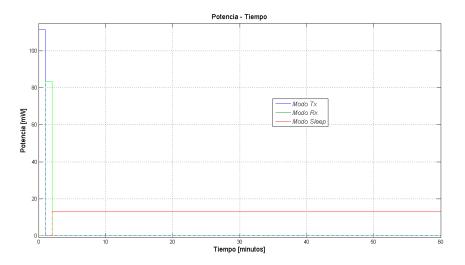


Figura: Potencia consumida por los estados del nodo.

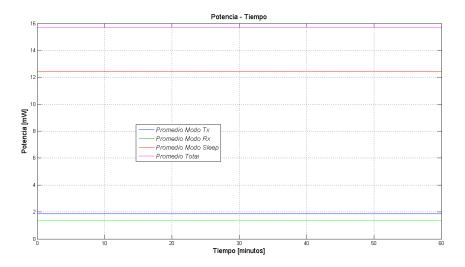


Figura: Potencia promedio de los estados.

10 Implementación de nodos

Conclusiones

12 Por último

Conclusiones I

Objetivo principal

• El objetivo principal es diseñar e implementar un prototipo de sistema de cosecha de energía, de baja potencia, capaz de capturar energía del medio ambiente.

Conclusiones II

Objetivos específicos

- Caracterizar eléctricamente los elementos de cosecha de energía.
- Caracterizar eléctricamente los elementos de almacenamiento.
- Diseñar PCB con la capacidad de calibrar los umbrales de sobretensión y subtensión para proteger los elementos en donde se almacena la energía.
- Mediante pruebas en campo, cumple con las necesidades del proyecto WSN.

100 Implementación de nodos

Conclusiones

Por último

Preguntas

Agradecimientos

«Si he logrado ver más lejos, ha sido porque he subido a hombros de gigantes»

Isaac Newton

